
 

A Traffic Network Equilibrium Model for Uncertain Demands

Shoichiro Nakayama 
Department of Civil Engineering 
Kanazawa University 

Jun-ichi Takayama 
Department of Civil Engineering 
Kanazawa University 

 

Phone: +81-(0)76-234-4614 
Fax: +81-(0)76-234-4632 
email: snakayama@t.kanazawa-u.ac.jp

  

Abstract 
 
Evaluating uncertainty of traffic networks is very important. In order to assess the uncertainty 
theoretically, we need an equilibrium model that can estimate probabilistic distributions of 
(link) travel times or traffic volumes. Stochastic user equilibrium (SUE) can calculate 
deterministic travel times, but cannot calculate variance or volatility of travel times. SUE 
seemed to be insufficient for assessing network’s uncertainty. We develop a stochastic network 
equilibrium model, in which travel times and traffic volumes are random variables. The 
equilibrium model can estimate variances of link travel times, and evaluate the network’s 
uncertainty. Furthermore, the model can be extended for uncertain demands by introducing 
hypothetical links. Thus, this equilibrium model opens the door for modelling traffic networks 
in uncertain environments, especially uncertain demands. 
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ABSTRACT 
 
Evaluating uncertainty of traffic networks is very important. In order to assess the uncertainty 
theoretically, we need an equilibrium model that can estimate probabilistic distributions of (link) travel 
times or traffic volumes. Stochastic user equilibrium (SUE) can calculate deterministic travel times, 
but cannot calculate variance or volatility of travel times. SUE seemed to be insufficient for assessing 
network’s uncertainty. We develop a stochastic network equilibrium model, in which travel times and 
traffic volumes are random variables. The equilibrium model can estimate variances of link travel 
times, and evaluate the network’s uncertainty. Furthermore, the model can be extended for uncertain 
demands by introducing hypothetical links. Thus, this equilibrium model opens the door for modeling 
traffic networks in uncertain environments, especially uncertain demands. 
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1. INTRODUCTION 
 
Stochastic User Equilibrium (SUE) introduced by Daganzo and Sheffi (1) is one of the most important 
network equilibrium. SUE is regarded as Wardrop’s equilibrium (2) with route choice based on 
random utility models. The (route) utility in route choice of SUE has an error term. The interpretation 
of the error term is disputable. Variance of the error term is constant despite of route’s length, and the 
term does not seem to reflect variation or uncertainty of travel time on the route. The error term should 
be interpreted as “perceptual” error or effect of the components that are not considered in the model. 
Furthermore, network flows in SUE is not stochastic but deterministic. SUE cannot treat uncertainty or 
variation of network flows.  
 We assume that a driver chooses a route stochastically, but does not chooses the route based 
on random utility theory; just chooses the route “probabilistically.” This represents a combination of 
choices with probabilities. For example, Choice 1 is adopted with probability 0.5 and Choice 2 with 
0.5. This type of choice is called as mixed strategy in game theory. Under mixed-strategy-type 
stochastic route choice, the route flow follows binomial distribution (or multinomial distribution). In 
this study, it is assumed that route choice is not only stochastic, but route flows are also stochastic. 
This is fundamentally different from SUE. Furthermore, we introduce hypothetical links (3, 4) which 
represents no travel to the network. This enables us to consider uncertainty of travel demands because 
flow of the hypothetical link is also stochastic. The aim of the study is to formulate a stochastic 
network equilibrium model with stochastic flows under uncertain demands. 
 
 

2. SIMPLE LITERATURE REVIEW 
 
Uncertainty or variation of networks is very important on transportation planning or transportation 
engineering. There have been several studies about uncertainty of network flows. Mirchandani & 
Soroush (5) assumed that free-flow travel time is random, and proposed a network equilibrium model 
with probabilistic travel times. Chen et al. (6) examined capacity reliability, considering random 
capacities and demands. Arnott et al. (7) also introduced random capacity to network equilibrium. 
These three studies assumed exogenous randomness. Cascetta (8) and Cascetta & Canterella (9) 
formulated day-to-day dynamics of network flows as Markov process. The convergent distribution of 
network flow could be interpreted as network equilibrium with stochastic flow. The problems of 
Markov models are how a transition probabilistic matrix (of Markov process) is made and 
applicability to a large network. Watling (10) extended SUE and presented a second order stochastic 
network equilibrium. He assumed route choice based on random utility theory and stochastic flow 
variables. The travel demands are assigned based on the mean cost. In this study, we do not assume 
route choice based on random utility theory, and formulate a stochastic network model more simply. 
Then, we incorporate driver’s risk attitude and uncertain demands into the model. This model enable 
us to examine network reliability under uncertain demands. 
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2. FOUNDAMENTAL CONCEPT AND FORMULATION 
 
The concept of Wardrop’s equilibrium is as follows: 
 

Equilibrium under condition that no driver can reduce his route cost by unilaterally 
switching routes 

 
This Wardrop’s equilibrium is a kind of Nash equilibrium (11) in game theory (12). Assuming that the 
driver chooses the route stochastically and that network flows are also stochastic, the following 
equilibrium condition could be defined as: 
 

No driver can reduce his EXPECTED route cost (or utility) by unilaterally switching routes 
 
This concept is very natural in light of generalization of Wardrop’s equilibrium. Nakayama (13) and 
Bell & Cassir (14) also touched upon the above equilibrium condition. Stochastic choice in this study 
is a combination of choices with probabilities. For example, Choice 1 is adopted with probability 0.5 
and Choice 2 with 0.5. As mentioned before, this is called mixed strategy in game theory. 

Let i (i = 1, 2,…, I) denote an origin-destination (OD) pair of the network and Ni the demand 
of OD pair i. Let j denote a route and the number of routes is J, and the set of routes between OD pair i 
is Ji. Let a denote a link and the number of links is A. Assume that the driver who travels between OD 
pair i chooses Route j with probability pj, where pj is the probability of choosing Route j. Especially, if 
Route j belongs to OD pair i, the probability of choosing Route j is denoted by pi

j. Then, the route 
flows of OD pair i follow a multinomial distribution. The flow on Route j of OD pair i follows a 
binomial distribution, Bin(Ni, pi

j). Thus, the flow is a random variable and the travel time is also a 
random variable.  

The equilibrium model of this study is formulated as follows: 
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where E[⋅] denotes the operator of expectation, Uj
i the random variable of utility on Route j connecting 

OD pair i, and λi the minimum expected utility between OD pair i. In this study, Uj
i is defined as E[Tj

i] 
+ η⋅Var[Tj

i], where η is a risk attitude parameter, Var[⋅] denotes the operator of taking variance, and Tj
i. 

is the random variable of travel time on Route j. The driver is risk-averse when the parameter, η, is 
positive and he is risk-prone when it is negative.  

The above equations can be formulated as a non-linear complementary problem: 
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Determine x* = (p*, λ*) ∈ RJ
+ ×RI

+  such that x · F[x] = 0,  x ≥ 0, F[x] ≥ 0 (2) 

 

where x · y denotes the inner product of x and y, x = (p, λ), F[x] = (E[U] – ΓT λ, Γ p – I), E[U] is the 
vector of the expected utilities (which is the function of p), p the vector of the route choice 

probabilities, λ the vector of the minimum expected utilities, Γ the J×I route-OD incident matrix, I a 
unit vector, and 0 a null vector. 
 Alternatively, we can formulate the equations as a variational inequality problem: 
 

Determine x* = (p*, λ*) ∈ RJ
+ ×RI

+  such that F[x*] · ( x – x*) ≥ 0  ∀x (3) 
 
 

3. EXPECTED TRAVEL TIME 
 
Traffic volume on each route follows a binomial distribution, and the link volume which consists of 
the demand between one OD pair also follows a binomial distribution. In general, OD pairs are 
multiple, not single, and the link volume is the summation of binomial variables. The summation of 
binominal variables does not become a binominal variable like normal distributions, and treating 
binomial distributions is more or less difficult. The expected travel time on the link is calculated as 
follows: 
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where Ta is the random variable of travel time on Link a, Pr[xi

a] is the probability that the link volume 

of the demand between OD pair i is xi
a and is calculated by 
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jja p,δ  and represents the probability that the driver between OD pair i travels on Link a, and δa,j 

is 1 if Link a is part of Route j; otherwise, 0. 
In this study, we adopt a BPR-type cost-flow performance function for calculating travel 

time, and link travel time can be expressed as α + β⋅xγ, where x is link volume and α, β, and γ are 
positive constant parameters. When γ is an integer (usually 4.0 is used), the expected link travel time 
can be calculated using moment generating functions. A moment generating function, M(s), is defined 

as E[esX] (e.g., 15, 16). As a property of the moment generating function, E[Xγ] = 
0

)(

=sds
sMd

γ

γ

. Also, 

the moment generating function of the summation of independent random variables is the product of 
the moment generating function of each random variable. 
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The random variable of link volume, Xa, is ∑ ⋅
j

jja F,δ , where Fj is a binomial variable of 

the flow on Route j. Let Mi
a(s) denote a moment generating function of link flow between OD pair i. 

Then, the moment generating function of link flow of all demands, Ma(s), is ∏
i

i
a sM )( . The expected 

link travel time is: 
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The expected travel time of Route j, E[Tj], is ∑ ⋅
a

aja T ][E,δ . Variance of link travel time, Var[Ta], is 

E[Ta
2] – {E[Ta]}2.  

Covariance of travel times of Link a and Link a', Cov[Ta, Ta'], is also calculated using moment 
generating functions. In order to calculate covariance of travel times between links, traffic volumes on 
Link a and Link a' are decomposed as illustrated in Figure 1. Let Xa,a' denote the random variable of 
traffic volume that flows on both Link a and Link a', Ya,a' the variable of the volume that flows on 
Link a only, but does not flow on Link a', and Za,a' the variable of the volume that flows on Link a'. 
Covariance of travel times between links is E[ta(Xa,a' + Ya,a') ⋅ t a' (Xa,a' + Za,a')] – E[Ta] ⋅ E[Ta']. The 
covariance can be calculated using the following equation as follows: 
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where xi

a,a', yi
a,a', and zi

a,a' are the values of Xi
a,a', Yi

a,a', and Zi
a,a', respectively, Xi

a,a', Yi
a,a', and Zi

a,a' are 
the values of Xi

a,a', Yi
a,a', and Zi

a,a' (which consist of the demand between OD pair i), Pr[xi
a,a', yi

a,a', zi
a,a'] 
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Fig. 1 Decomposition of link volumes for covariance  
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denotes the probability that a driver of the demand between OD pair i takes the routes including both 

Link a and Link a', that is, the probability of xa,a' , i
y aa

p
′,
 the probability of ya,a', i

z aa
p

′,
 the probability 

of za,a'.  
Cov[Ta, Ta’] can also be calculated using the moment generating function. At first, let us 

calculate covariance of link volumes which consist of the demand between OD pair i. In this case, 
Xi

a,a', Yi
a,a', and Zi

a,a' follow a multinomial distribution (quadrinomial distribution). Let Mi(s, t, u) 

denote a moment generating function of this quadrinomial distribution. Mi(s, t, u) is (pi
x⋅es + pi

y⋅et+ 

pi
z⋅eu + 1 – pi

x – pi
y – pi

z)N where the subscript, a,a', is omitted. When there are multiple OD pairs, the 

moment generating function of all demands, M(s, t, u), is ∏
i

i utsM ),,( . As described above, the 

covariance is E[ta(Xa,a' + Ya,a') ⋅ t a' (Xa,a' + Za,a')] – E[Ta] ⋅ E[Ta'], and is written as a polynomial equation 

of E[Xl, Ym, Zn] (0 ≤ l, m, n ≤ 2γ). E[Xl, Ym, Zn] is calculated by 
0,,
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=

++
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uts
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uts
utsM (16). Therefore, 

the covariance can be calculated more efficiently using the moment generating function than the 
equation (6). 

Variance of the route travel time, Var[Tj], is calculated as follows:  
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4. UNCERTAINTY OF TRAVEL DEMANDS 
 
The equilibrium model proposed above assesses uncertainty of network flow, which occurs because of 
stochastic route choice. One of the main causes of uncertainty in transportation networks is uncertain 
travel demands. We can easily incorporate uncertain travel demands into our equilibrium model. 

 Let us introduce a latent travel demand, N~ . The latent travel demand represents the number 
of drivers who have possibility of making trips, and is defined for each OD pair. Let pi

0 denote the 
probability that the latent travel demand do not actually make trips. The actual travel demand of OD 
pair i, which represents the number of drivers that make trips actually, follows the binomial 

distribution, Bin( iN~ , 1 – pi
0). Thus, uncertain travel demand of each OD pair can be expressed as the 

binomial distribution. As noted earlier, our equilibrium model is based on binomial distributions, and 
we can easily incorporated uncertain travel demands into the model, adding hypothetical link which 
represents the choice of not making a trip.  
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5. EXAMPLE 
 
As an illustration of the equilibrium model, a simple network example is presented, consisting of a 
single OD pair and two parallel links (routes). Figure 2 shows the network. As the value of γ in the 

performance function, α + β⋅xγ, 2.0 is used on both links. The values of α and β of Link 1 are 10 and 

1/10002, respectively. These represent that the capacity and free-flow link travel time are 1000 (vehicles 
per hour) and 10 (minutes). The values of Link 2 are 20 and 1/20002, and represent that Link 2 has the 

capacity of 2000 and the free-flow travel time of 20. Route utility, Uj, is defined as E[Tj] + η⋅Var[Tj]. In 
this example, as the values of the risk attitude parameter, η, 0.0, 1.0, and 2.0 are used. Table 1 presents 
the cases in the example.  

 Figure 3 illustrates the expected link travel times with each value of the risk parameter in 
Case 1a through 1d. Figure 4 presents the expected travel times in Case 2a through 2d. When η = 0.0 
(Case 1a and Case 2a), the expected travel times on both link are equivalent, and in the other cases, the 
expected travel times on Link 1 is longer than Link 2. This is because Link 1 has a smaller capacity 
and tends to be more congested than Link 2. The figures show that the difference of the expected 
travel times on both links is larger as variance of actual travel demand, that is, p0, is larger. 
 
 

6. CONCLUSIONS 
 
Evaluating uncertainty of traffic networks is very important. In order to assess it theoretically, we need 

Table 1  The cases in the example 
 

Case 1a Case 1b Case 1c Case 1d Case 2a Case 2b Case 2c Case 2d
Latent demand p 0 0 0.1 0.3 0.7 0 0.1 0.3 0.7

    2500 2778 3571 8333 3500 3889 5000 11667
Actual demand Average 2500 2500 2500 2500 3500 3500 3500 3500

Variance 0 277 750 1750 0 388 1050 2450

N~

 

Link 1

Link 2

Hypothetical Link
　(This represents that the driver does not make a trip)

Link 1

Link 2

Hypothetical Link
　(This represents that the driver does not make a trip)

 
Figure 2  The example network 
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an equilibrium model that can estimate the probabilistic distributions of link travel times. However, 
stochastic user equilibrium (SUE) can calculate deterministic travel times, but cannot calculate 
variance or volatility of travel times. SUE is insufficient for assessing network’s uncertainty. We 
proposed the stochastic network equilibrium model, in which travel times and traffic volumes are 
random variables, and formulated it as a complimentary problem. The model can estimate variances of 
link travel times, and evaluate uncertainty in the network, considering drivers’ risk attitude. Then, we 
extended the equilibrium model to consider uncertain travel demands using hypothetical links. As for 
the future directions of the study, we will develop an algorithm for large networks and examine 
uniqueness of the solution.  
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