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Abstract 
 
The logit model based on random utility theory has often been used for discrete choice behavior 
analysis. In the conventional logit model, it is assumed that variables are independent of each 
other and that their relationship is linear. In general, the relationship or behavior of the variables 
is non-linear, and the assumptions of the logit model are not always proper. Therefore, 
incorporating neural networks, which are suitable to make an analysis non-linearly, to the logit 
model is very useful. In this study, we propose the logit model using non-linear utility functions 
with neural network. Then, we analyze a discrete choice behavior in traffic phenomenon by the 
model, and examine the validity of the model. 
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Abstract 
The logit model based on random utility theory has often been used for discrete choice 

behavior analysis. In the conventional logit model, it is assumed that variables are independent 
of each other and that their relationship is linear. In general, the relationship or behavior of the 
variables is non-linear, and the assumptions of the logit model are not always proper. Therefore, 
incorporating neural networks, which are suitable to make an analysis non-linearly, to the logit 
model is very useful. In this study, we propose the logit model using non-linear utility functions 
with neural network. Then, we analyze a discrete choice behavior in traffic phenomenon by the 
model, and examine the validity of the model. 
 
Keywords: Non-Linear Analysis, Logit Model, Neural Network, Giveway Behavior 
 
 
1. INTRODUCTION 
 
Most of driver’s behavior seems to be discrete choices. The logit model [1, 2] based 
on random utility theory has often been used for analysis of discrete choice behavior 
for decades. The logit model determines the probability of choosing a choice based 
on the utility. In the past, the utility has been formulated as a linear function in most 
studies. This represents that the (exploratory) variables work independently and that 
the relationship of them is not non-linear. However, in general, the variables are not 
necessarily independent of each other. The logit model with linear utility functions 
could miss some non-linear effects or phenomena of discrete choice behavior.  

In this study, neural networks, which are suitable for non-linear analysis, are 
incorporated into the utility function, and we propose the logit model with such 
non-linear utility functions. Then, we can analyze a discrete choice behavior in 
traffic phenomena, and examine the validity of the model. As a non-linear function, 
polynomial expression as well as neural network is also available. However, stability 
of estimating parameters becomes low when including a high order term. Neural 
network can express various shapes as a non-linear function, can estimate stable 
parameters, and has already been applied prevailingly in many fields.  
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2. NEURAL NETWORKS AND UTILITY FUNCTIONS 
 
2.1. Neural Networks 

A neural network model is a non-linear learning model that has been formulated 
based on neural networks in brains. It can deal with data that has complex structure 
and can analyze non-linear relationships among variables easily. Neural networks are 
applied as methods of data mining and elements of artificial intelligence in many 
studies in transportation engineering [3, 4]. Nevertheless, there are only a few 
applications to the analysis of discrete choice behavior in transportation engineering 
including travel behavior analysis [5, 6, 7]. As discussed in the previous section, a 
neural network model is suitable when the variables work non-linearly. 

A 3-layer feed-forward neural network as shown in Figure 1 is the most 
frequently used formulation in recent applications of neural networks. These layers 
are called an input layer, a hidden layer, and an output layer, respectively. At each 
node in the input layer, input values entered from outside are emitted to nodes in the 
next layer without change. At each node in the hidden layer and the output layer, the 
output value from a node in the preceding layer is transformed by an activation 
function, and it’s a transformed value is emitted to nodes in the next layer. A sigmoid 
function is frequently used as an activation function. In this case, an output from the 
hidden layer is defined as follows: 
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where 
yk = the output from the kth node in the hidden layer (and is also the input of 
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Figure 1.  A 3-layer neural network 
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xj = the output from the jth node in the input layer (and is equal to the input of 
jth node in the input layer), 

wkj = the weight between the jth node in the input layer and the kth node in the 
hidden layer, and  

θk = the threshold in the hidden layer (in Figure 1, this is omitted for small 
space).  

 
When a node in the output layer is single, an output from the output layer is: 
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where 
V = the output from the node in the output layer,  
yk = the output from the kth node in the hidden layer, 
wk = the weight between the kth node in the hidden and the node in the output 

layer,  
θ = the threshold in the output layer. 

 
A back propagation algorithm [8] is frequently used when updating connection 
weights between nodes. In the back propagation algorithm, the weights are updated 
so as to minimize the square errors between the network output and the desired 
output (or teacher signal). 
 
2.2. Utility Functions with Neural Networks 

The logit model is one of discrete choice models and is used most frequently. 
The model calculates the probability of choosing a choice based on the utility. In the 
conventional logit model, a utility function is written as: 
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where  

Vi = (the systematic component of) the utility of the ith choice, 
xij = the jth variable of the ith choice, and 

wj ,θ = parameters  
 

In random utility theory, the utility of each choice is random, and the choice which 
has the maximum utility is taken. The utility, U, is almost always defined as V + ζ, 
where ζ is the random term, whose mean is 0. In the logit model, ζ is Gumbel 
distributed, and the probability of the ith choice, Pi, is: 
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In this study, two kinds of non-linear utility functions with the neural network 

are adopted. 
1) NN Utility Function 1: The conventional logit model has the linear utility 

function written in Equation (3). We formulate the non-linear utility function as a 
3-layer feed-forward neural network with one output node. In the neural network 
model which has sigmoid functions as activation functions, the output is in the range 
from 0 to 1. However, the value of the utility is not necessarily within that range. As 
an activation function in the output layer, a linear function can be adopted. The 
activation function in the hidden layer is a sigmoid function as usual. In this case, 
the utility function is expressed as: 
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We shall call the logit model with this utility function NN logit I and call the utility 
function NN utility function I.  

2) NN Utility Function 2: In NN utility function 2, as an activation in the output 
layer, the revised sigmoid function is used. A new parameter, γ, is incorporated into 
the numerator of the sigmoid function. The activation function in the hidden layer is 
a (normal) sigmoid function. NN utility function 2 is written as: 
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We shall call the logit model with this utility function NN logit II and call the utility 
function NN utility function II. 
 
2.3. Estimation of Parameters 

A back propagation method [8] is frequently used when estimating parameters 
(connection weights) in neural network models. However, the back propagation 
method cannot be applied to the logit model with neural network utility functions 
because there does not directly exist the desired data for the output of the neural 
network, V. We use the maximum likelihood estimation. The maximum likelihood 
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estimation is the optimization of the following likelihood function: 
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where  
L = the likelihood, and 
Pi

n = the probability that the nth individual chooses the ith choice. 
 
A solution of the maximization of the likelihood function satisfies the usual 

first-oder conditions. When the utility function is linear, the likelihood function of 
the sample conditioned on the parameters is convex and the ordinary optimization 
method such as the Newton-Raphson algorithm can be used. However, when the 
utility function is not linear, the likelihood function is not necessarily convex. 
Therefore, we estimate the parameters by the gradient method using simulated 
annealing. The parameters are updated by the following equation: 
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where  

w(m) = the parameter (connection weight) in the mth step,  
η = a small positive parameter, and 
ε(m) = the normal random number in the mth step.  
 

The mean of the normal random number is 0 and the variance decreases as the step 
goes by. In this study, ε(m) is T0 / ln m, where T0 is the initial variance. The solution is 
obtained after sufficient iteration.  

Even if the parameters fall into a local maximum, they escape from the local 
solution by the error term, ε. Thus, the above method can estimate the parameters 
properly even when the utility function is not linear. 
 
 
3. ANALYSIS 
 
3.1. Data 

We apply the model to giveway behavior at the merging point on the road. 
Figure 2 illustrates giveway behavior. At the merging point, some vehicles on the 
main lane change the lane to avoid conflicts with the merging vehicles. In this study, 
the behavior is assumed to be binary choice of whether or not the vehicle makes a 
giveway as shown in Figure 2. The survey was conducted at the merging point on 
Route 1 in Narano-cho, Kyoto, Japan. The sample size is 537. The explanatory 
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variables of giveway behavior are time headway between the vehicle on the main 
lane (the objective vehicle) and the merging vehicle and the accelerated velocity of 
the objective vehicle. Headway time is the elapsed time between the time that the 
merging vehicle passes a fixed line and the instant that the objective vehicle passes 
that line. The vehicle makes a giveway in order to avoid conflict with the merging 
vehicle, whose velocity is lower than the objective vehicle, and the objective vehicle 
locates on the upstream than the merging vehicle. Otherwise, the vehicle do not need 
to make giveway. 

The difference of the utilities of both choices, V (= V1 – V2), is the function of 
relative velocity and headway time, where V1 is the utility of making giveway and V2 
is the utility of not making giveway and going straight on the same lane. In this study, 
we do not treat V1 and V2 explicitly and use the utility difference, V. According to 
Equation (4), the probability of choosing the first gap, P1, is calculated by: 
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3.2. Results 

Table 1 shows the results of NN logit I, NN logit II and the linear logit model 
(conventional logit model). In light of the log-likelihood ratio, ρ2, AIC, and hitting 
ratio, NN logit I models are better than the linear logit. NN logit II models except 
NN logit II with one node are better than the linear logit model. This implies that NN 
logit models are better than the linear logit model, but the NN logit models are not 
always better than the linear logit model. NN logit I model are better than NN logit 
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Figure 2.  Giveway behavior 
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II. The difference of NN logit I and NN logit II is the activation function in the 
neural network. It is important to determine which activation function is used. The 
log-likelihood ratio index in the NN logit I and NN logit II increases with the 
number of nodes in the hidden layer, and accuracy of estimation seems to improve 
with the number of nodes in the hidden layer. This is very natural because the 
number of the estimated parameters increases. AIC of NN logit I with the two nodes 
in the hidden layer is the highest, and it could be the best of all models. We can say 
that the NN logit model can analyze discrete choice behavior more elaborate than the 
logit model with linear utility functions if the neural network is properly set.  

Figure 3 and Figure 4 present the parameters (connection weights and thresholds 

Table 1. The results of NN logit models 
 

 Node L0
* L* ρ2 AIC 

Hitting 
ratio 

Linear Logit - -415.9 -287.1 0.229 580.2 76.35% 
1 -415.9 -283.2 0.239 576.4 76.35% 
2 -415.9 -249.4 0.330 516.8 78.21% NN logit I 

 3 -415.9 -246.8 0.337 519.7 78.40%
1 -415.9 -284.7 0.235 581.5 76.35% 
2 -415.9 -249.2 0.330 518.4 76.35% NN logit II 

 3 -415.9 -247.1 0.336 522.2 76.35% 
L*: the log-likelihood,  L0

*: the initial log-likelihood 
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Figure 3. The parameters in the linear logit 
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Figure 4. The parameters in NN logit I with two nodes in the hidden layer 
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that are omitted in Figure 1) in the linear logit and the NN logit I model with two 
nodes in the hidden layer, respectively. Figure 5 and Figure 6 illustrate the 
relationships of the exploratory variables in the NN logit model with two nodes in 
the hidden layer and the linear logit model, respectively. In the figures, the values of 
the variables are normalized between –1 and +1. These figures are quite different 
each other. The probability of making giveway in the linear logit model is a flat 
surface in Figure 5 while one in the NN logit model is a curved surface like chevron 
in Figure 6. Note that Equation (9) shows that the probability of making giveway is 
larger with the utility difference, V, which is – 1.1 x1 − 0.05 x2, where x1 is headway 
time and x2 is accelerated velocity. In Figure 5, the headway time affects giveway 
behavior at a constant rate despite of accelerated velocity, and the two variables 
works independently, unlike Figure 6. Figure 6 illustrates that the probability of 
making giveway is smaller with the headway time on the whole. However, the effect 
of accelerated velocity on the giveway probability is not so simple as the headway 
time. As the accelerated velocity is close to its average, the giveway probability is 
higher. Thus, the effect of the accelerated velocity is not linear. 

Figure 7 represents the histogram of giveway behavior. The horizontal axis is 
the accelerated velocity and the vertical axis is the probability. Figure 7 shows that 
the probability is chevron-wise. Figure 7 implies that Figure 6 in the NN logit with 
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Figure 5. The utility difference in the linear logit 
 
 

-1
-0.5

0
0.5

1

-1

-0.5
0

0.5
1

0
0.25

0.5

0.75

1

-1
-0.5

0
0.5

1

-1

-0.5
0

0.5
1

Probability 
of  giveway

Accelerated 
velocity

Headway time

-1
-0.5

0
0.5

1

-1

-0.5
0

0.5
1

0
0.25

0.5

0.75

1

-1
-0.5

0
0.5

1

-1

-0.5
0

0.5
1

Probability 
of  giveway

Accelerated 
velocity

Headway time
 

 
Figure 6. The utility difference in the NN logit 
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two nodes in the hidden layer is more accurate than Figure 5 in the linear logit. In 
conclusion, the logit model using non-linear utility functions can be useful for 
discrete choice behavior analysis. Also, it is found that the NN logit model can 
analyze the effect or phenomena that the conventional logit model cannot catch. 
 
 
4. CONCLUSIONS 
 
The logit model based on random utility theory has often been used for discrete 
choice behavior analysis. In the conventional logit model, it is assumed that 
variables are independent and that their relationship is linear. In general, the 
relationship and behavior of the variables are non-linear, and the assumption of the 
logit model is not always proper. In this study, we proposed the logit model using 
non-linear utility function with neural network. Then, we can analyzed giveway 
behavior at the merging point on the highway, and examined the validity of the 
model. AICs and log-likelihood ratios of most logit models with neural network 
utility function (NN logit models) are higher than the logit model with linear utility 
function. This illustrates that the logit model using non-linear utility functions can 
be useful for discrete choice behavior analysis. Furthermore, it is found that the NN 
logit model can analyze the effect or phenomena that the conventional logit model 
cannot catch. Performance of the models depends on activation functions in the 
neural network, and the future work is to examine which activation function should 
be adopted more. 
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