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Chapter 

Stochastic multi-modal transport network under demand 
uncertainties and adverse weather condition 

Agachai Sumalee, The Hong Kong Polytechnic University, Hong Kong; Kenetsu 
Uchida, Hokkaido University, Japan; William H.K. Lam, The Hong Kong 
Polytechnic University, Hong Kong 

Abstract   This paper proposes a novel multi-modal transport network assignment 
model considering uncertainties in both demand and supply sides of the network. 
These uncertainties are mainly due to adverse weather conditions with different 
degrees of impacts on different modes. The paper provides derivations of mean and 
var-cov of passenger flows under the common-line framework and different dis-utility 
terms involved in the route/mode choice model. The model allows the risk-averse 
travelers to consider both an average and uncertainty of the random perceived travel 
time on each multi-modal path in their path choice decisions, together with the impacts 
of weather forecasts. The model also considers travelers’ perception errors using a 
Probit stochastic user equilibrium framework formulated as fixed point problem. A 
heuristic solution algorithm is proposed for solving the fixed point problem. 
Numerical examples are presented to illustrate the applications of the proposed model. 

1. Introduction 

Transportation network is exposed to both demand and supply uncertainties. The 
causes of the supply variability can be further categorized as predictable (e.g. weather 
condition or scheduled road work) and less-predictable one (e.g. accident or vehicle 
breakdown). On the demand side, a significant level of the day-to-day demand 
variation can be observed in most cities. The coupling of the demand and supply 
uncertainties results in the recurrent variability and unreliability of the travel time and 
traffic condition. This issue has been gradually becoming a major concern for many 
countries (SACTRA, 1999). 

Several stochastic network models have been proposed to incorporate demand 
and/or supply uncertainties into the analysis (see e.g. Clark & Watling 2005; Lo & 
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Tung, 2003). The main focus on modeling the capacity variability in the literature has 
been on the car only network with the less-predictable causes of uncertainty. With an 
exception, Lam et al (2008) proposes a stochastic network model which considers the 
effect of weather condition on the road performance. Their model also incorporates 
weather forecast information into the driver’s route choice model. Nevertheless, their 
model is restricted to the auto-only network.  

This paper proposes a model for representing multi-modal transport system under 
uncertain demand and supply. The proposed model particularly captures the effect of 
weather condition (predictable causes) on road performances and traveler’s 
route/mode choice behaviors. The adverse weather deteriorates supply of different 
modes with various scales. The rainfall or snowfall can significantly reduce the free-
flow speed and capacity of the road which also affects journey time and waiting time 
of bus services. On the other hand, the weather condition may not have a significant 
impact on a weather-proof transit system, e.g. underground network. It is plausible to 
assume that travelers generally do not desire to walk under such severe weather 
condition.  

The proposed model in this paper considers auto, bus, rail, underground, and 
walking as possible travel modes in which a multi-modal trip is allowed. The 
stochastic origin-destination (OD) travel demand is assumed to follow Poisson 
distribution. The common-line framework for transit network modeling (Spiess & 
Florian, 1989) is implemented in the proposed model to represent travelers’ strategies 
in transit network. The common-line framework requires a very complex analysis to 
derive the analytical property of the model (unlike the stochastic model of the auto-
only network). Sections 2 and 3 present statistical properties (mean and variance) of 
the flows and travel dis-utility terms of the stochastic multi-modal network model.  

In Hong Kong, there is a rain storm warning system with three levels signal based 
on the forecasted level of hourly average rainfalls. In Japan or other cold regions, the 
forecast of heavy snowfall is also provided to the public. The weather forecast will 
inevitably influence traveler’s behavior. Each traveler may also have her own prior 
belief regarding possible weather based on her past experiences given the weather 
forecast information. Section 4 explains the application of Bayes’ Theorem to 
incorporate both weather forecast and prior belief into the travel’s route choice model 
following Lam et al. (2008).  

Uncertain of their actual generalized travel costs and the weather condition, the 
travelers may have to choose between paths with lower expected generalized travel 
costs but less reliable and other more reliable paths but with higher expected 
generalized travel costs. Such risk-averse behaviors in the context of path choice 
model have been confirmed by several empirical studies (see e.g. de Palma & Picard, 
2005). Section 4 defines the effective generalized travel cost as a sum between the 
mean and standard deviation (SD) of the generalized dis-utilities on each multi-modal 
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route. The SD term is a proxy of the variability of the travel condition on each route. 
Section 5 then presents the Probit Stochastic User Equilibrium (SUE) route/mode 
choice model (Uchida et al, 2007) and a path-based solution algorithm for solving the 
assignment problem. Section 6 then presents numerical tests using a hypothetical 
multi-modal network. The final section then concludes the paper and recommends 
future research issues.  

2. Preliminaries and stochastic flow model  

2.1  Notations and assumptions 

The notations used throughout the paper are listed as follows unless specified 
otherwise. For notational consistency, the italic capital letters will be used to denote 
random variables. The italic lower-case letters will be used to denote the means of the 
random variables represented by the corresponding upper-case letters.  

 
Π  Set of O-D pair 
o Origin node 
d Destination node 
Kod Non-empty path set between O-D pair o d− ∈Π . 
Qod Stochastic travel demand between O-D pair o-d with mean qod 
I  Stochastic weather category. 
i   Realized weather category. 

ip�  Prior probability of weather category i provided by weather forecast. 
ip′  Posterior probability of weather category i 

Sa Set of physical auto links 
Su Set of physical underground links 
Sw Set of physical walking links

G( S� ,N) 
A physical multi-modal transport network with N being a set of 

physical nodes and S=S S Sa u w∪ ∪� being a set of physical links 

L ,L L L Lb u a w= ∪ ∪ where Lb, Lu, and La,w are sets of bus, 
underground, and dummy lines (for auto and walking) respectively  

lfr  Nominal frequency of service of line l L∈  (veh/hour) 

lκ  Vehicle capacity for service of line l L∈  
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(S, N)G =�

 
A hyper-network with N being a set of nodes and S=S Sb∪� being a 

set of hyper-links; Sb is a set of bus hyper-links.  
As  Set of attractive lines of hyper-link s S∈  

sV  Number of travelers on hyper link s S∈  with mean sv  

s
lV  

Number of travelers on hyper link s S∈  using line Asl∈ with 
mean s

lv  

s
lV�  

Number of travelers sharing capacity of line l on hyper-link s but not 
traveling on hyper-link s; with mean s

lv�   

sV�  
Number of travelers using any of line A sl∈ but not on hyper-link s; 

As

s s
l

l

V V
∀ ∈

= ∑� � ; with mean s
lv�  

ˆ s
lV  Number of equivalent car unit on hyper-link Sas∈ (inc. bus flows) 

s
lC  Number of all passengers using line Asl∈  over the same route 

section of hyper-link s  
od

kF  Path flow on path k  connecting between O-D; with mean od
kf  

s
lT  Travel time on auto-link Sas∈  with mean s

lt  

s
lT�  

Perceived in-vehicle travel time with crowding effect (PIT) for 
travelers on line Asl∈ over hyper-links S Sb us∈ ∪  with mean s

lt�  
ˆ sT  PIT for travelers using hyper-links S Sb us∈ ∪  ; with mean ˆst  

od
kD  PIT for travelers using path k  between O-D; with mean ˆod

kt  

sw  Mean waiting time for service on hyper-link S Sb us∈ ∪  
sy  Fare for using link S Sb us∈ ∪  

 
To facilitate the presentation of the essential ideas without loss of generality, the 

following basic assumptions are made in this paper: 
A1. The travel demands between each O-D pair are assumed to follow independent 

Poisson distributions similar to the assumptions made in other previous studies (Clark 
& Watling, 2005). Other types of probability distribution of O-D travel demand have 
also been adopted, e.g. Lognormal distribution and Normal distribution. These 
probability distributions may also be realistic to approximate the random travel 
demand. In reality, further calibration and validation works on the basis of observed 
data are required to identify the most suitable distribution of the O-D travel demand. 

A2. A Probit-based path choice model is adopted to reflect travelers’ perception 
errors in path choice decisions due to its ability to represent correlation between 
different multi-modal routes (IIA issue).  
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A3. It is assumed that severe weather conditions degrade performances of road 
links which in turn affect travel times of auto and bus modes. The underground mode 
is assumed to be weather-proof. The bus frequency and the inconvenience of walking 
are also assumed to change with weather condition.  

A4. The multi-modal network model proposed in this paper falls within the 
category of static model for long term planning at the strategic level. Therefore, it is 
assumed that travelers can acquire the weather forecast information prior to their 
departures. As such, travelers will not change their paths en-route.  

2.2  Network representation 

We consider a multi-modal transport network comprising of auto, bus, underground 
(and/or rail), and walking modes which is represented by (S, N)G = � . Bus services are 
provided on different routes in the auto network. Each bus and underground line is 
characterized by its service route, vehicle capacity, and nominal service frequency. To 
simplify the formulation, the non-public transport mode (auto and walk) is also 
associated with a dummy line with indefinite vehicle capacity and service frequency.  

For a pair of stop/station nodes, there may be several public transport lines serving 
between these two nodes. The travelers can then board any first arriving bus from 
these lines. These possible lines are referred to as attractive lines. Each service line 
will be considered as an attractive line, if it helps reducing expected waiting times for 
transit services between these two nodes (Spiess & Florian, 1989). The transit 
passengers consider the set of attractive lines over each route section in their route 
choice decision. The common-line framework has been proposed to represent this 
travel strategy. For each pair of nodes, if there is at least one service line between 
them, a hyper-link will be defined to represent a travel strategy between this pair of 
nodes. Each hyper-link involves a set of attractive lines.  

Given (S, N)G = �  and L  a hyper-network (S S , N)bG = ∪� �  can be defined where 
Sb  is a set of hyper-links representing bus services between different pairs of nodes. 
Fig. 1 shows an example of a primitive multi-modal network with one underground 
line (line 1) and three bus lines (lines 2-4). Bus line 3 traverses through the lower route 
of the road network whereas the other two are on the upper route. Based on Fig. 1 a 
hyper-network, shown in Fig. 2, can be constructed. In Fig. 2, each link is annotated 
by link number and attractive lines in the bracket. Six hyper-links for bus services are 
created (hyper-links 2-7). For instance, hyper-link 2 represents the direct service of 
bus line 2 from nodes A to X in which line 2 is included as an attractive line. On the 
other hand, hyper-link 6 represents the bus service between nodes B and X in which 
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bus lines 3 and 4 are considered as attractive lines since they serve between nodes B 
and X. 

O1 

A B C X

D1

Z 

Walking link 

Auto link 

Transit link 

UG line 1: Z → X 

Bus line 2: A → B → C 

Bus line 3: A → B → X 

Bus line 4: B → C → X 

 
Fig. 1. Illustrative primitive physical network 

16 (l5) 

O1 

A B C X

D1

Z 

9 (l5) 

10 (l5) 

11 (l5) 

12 (l5) 

13 (l5) 
17(l5) 

14 (l5) 
15 (l5) 

1 (l1) 

Ab Bb Cb Xb

6(l3, l4)

5(l2, l4) 3(l2, l3) 7 (l4) 

UG line 1: Z → X 

Bus line 2: A → B → C 

Bus line 3: A → B → X 

Bus line 4: B → C → X 

Walking link 

Auto link 

Transit link 
Bus hyper- link 

2(l3) 

4(l2) 

18 (l5) 

8 (l5) 

 
Fig. 2. Hyper-network of the illustrative example 

Note that the elastic travel demand can be incorporated into the model formulation 
by introducing of one pseudo link for each OD pair representing the non-travel option 
following Connors et al (2007).  
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2.3  Stochastic passenger flow distribution 

Following A1, the random O-D travel demand follows Poisson distribution, i.e. 
( )~od odQ Poi q  with the mean and variance of odq . Conditional on the number of 

traveler realized on a given day, a random traveler is assumed to choose independently 
between alternative multi-modal routes Kodk ∈  with a constant probability od

kp . 
Following Clark & Watling (2005), the random path flow will then follow a 
compound distribution which is a Poisson distribution with mean (and variance) of 

od
k odp q , i.e. ( )~od od

k k odF Poi p q . Let ,s kδ denotes a dummy variable in which , 1s kδ =  

if path k uses hyper-link s and , 0s kδ =  otherwise. Based on the structure of the hyper-
network, the hyper-link flow can be defined as: 
 ,

Kod

s od
s k k

od k

V Fδ
∈Π ∈

= ⋅∑ ∑ . (1) 

Using the central limit theorem, the vector of hyper-link flows follows a Multivariate 
Normal distribution (MVN) with the mean of: 
 , ,

K Kod od

s s od od
s k k s k k od

od k od k
E V v f p qδ δ

∈Π ∈ ∈Π ∈

⎡ ⎤ ≡ = ⋅ = ⋅ ⋅⎣ ⎦ ∑ ∑ ∑ ∑ , (2) 

and the variance-covariance (var-cov) of: 
           ( ) ' ', , , ,

K K

cov , ji

i j i j
od od

ss od od
s k s k k s k s k k od

od k od k

V V f p qδ δ δ δ
∈Π ∈ ∈Π ∈

= ⋅ ⋅ = ⋅ ⋅ ⋅∑ ∑ ∑ ∑ .(3) 

Let v and VΣ be the vector of mean and var-cov matrix of the hyper-link flows 
respectively. Thus, the multivariate random hyper-link flows can be defined as: 
 ( )MVN , VΣV v∼ . (4) 

Based on the common-line framework, the passengers travelling on each hyper-link s 
will be assigned to different attractive line Asl∈  as follows: 

 

As

s sl
l

l
l

fr
V V

fr
∈

⎛ ⎞
⎜ ⎟= ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ �
�

. (5) 

The term 
A

/
s

l l
l

fr fr
∈
∑ �
�

, denoted by s
lη , is the ratio of the frequency of line l to the total 

service frequency of hyper-link s. Thus, s
lV  follows a MVN with the mean: 

 s s s s s
l l lE V E V vη η⎡ ⎤ ⎡ ⎤= ⋅ = ⋅⎣ ⎦ ⎣ ⎦ , (6) 

and the var-cov of: 
 ( ) ( ) ( ){ }cov , min cov , , cov ,a b a a b b a b

i j i j

s s s s s s s s
l l l lV V V V V Vη η= . (7) 
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The traveler flows on different hyper-links may share the same service capacity 
due to possible overlapping of their sets of attractive lines and route sections. For 
instance, from Fig. 2 the passengers using line l4 on hyper-link 6 share the vehicle 
capacity with the passengers using the same line but on hyper-link 7 over the section 
between nodes C and X in the physical network. This interaction influences the 
calculation of the in-vehicle congestion. Let ( )Ŝ s  be a set of hyper-links (except 
hyper-link s) with an overlapping route section with hyper-link s in the physical 
network. The passengers travelling on service line l on ( )ˆs S s∈�  can then be defined 
as: 
 

( )ˆˆ S

s s
l l

s s

V V
∈

= ∑
�� , (8) 

in which the mean of s
lV�  is: 

 
( ) ( )

ˆ

ˆ ˆˆ ˆS S

s s s
l l l

s s s s

E V E V v
∈ ∈

⎡ ⎤ ⎡ ⎤= =⎣ ⎦⎣ ⎦ ∑ ∑
�� . (9) 

Thus, the total number of passenger using line A sl∈  over the same route sections as 
hyper-link s (denoted by s

lC ) can be defined as.: 

 s s s
l l lC V V= + � . (10) 

The mean and var-cov of s
lC  can then be defined as: 

 
( ) ( )

ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆS S

s s s s s s s s s s
l l l l l l l

s s s s s

E C c E V V v v vη η η
∈ ∈ ∪

⎡ ⎤⎡ ⎤ ≡ = + = ⋅ + ⋅ = ⋅⎣ ⎦ ⎣ ⎦ ∑ ∑� , (11) 

 ( ) ( )
( )( )ˆ ˆS S

cov , cov ,a b

i j i j

a a b b

s s m n
l l l l

m s s n s s

C C V V
∈ ∪ ∈ ∪

= ∑ ∑ . (12) 

The cov between s
lC  and s

lV , which is required for further analysis, can be expressed 
as: 
 ( ) ( )

( )Ŝ

cov , cov ,a b a

i j i j

b b

s s s n
l l l l

n s s

V C V V
∈ ∪

= ∑ . (13) 
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3.  Formulation of stochastic generalized hyper- path travel cost 
distribution 

3.1  Generalized hyper-path cost terms 

The travelers will choose their multi-modal routes in the hyper-network by 
considering (i) perceived in-vehicle travel time (with in-vehicle congestion effect for 
transit modes), (ii) walking time, (iii) waiting time, and (iv) fare. Thus, the generalized 
travel cost for hyper-route k under each weather condition i can be defined as:  

( ) ( ) ( ) ( )

( )

, ,
S S S

,
S

ˆ ˆ

ˆ

a b u

w

s
od s s swait
k s k s k

s s

swalk
s k

s

yD i T i T i w i

T i

θδ δ
σ σ

θ δ
σ

∀ ∈ ∀ ∈ ∪

∀ ∈

⎛ ⎞⎛ ⎞= ⋅ + ⋅ + ⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+ ⋅

∑ ∑

∑
, (14) 

where waitθ  and walkθ  are monetary values of waiting and walking times respectively; 
σ is monetary value of travel time; and sw  is waiting time. The first term in (14) is 
the in-vehicle travel time for the route sections of auto mode. The second term 
combines perceived in-vehicle travel time with in-vehicle congestion effect (referred 
to as PIT), waiting time, and fare for transit sections. The last term is the walking time.  

3.2  Road travel time and effect of weather condition 

Following A3, rainfall or snowfall may degrade the road performance due to the 
changes on the driving condition (e.g. reduced visibility and pavement friction). This 
is equivalent to a reduction in traffic parameters (e.g. lower free-flow speeds and 
capacities). It is possible, then, to define and calibrate the actual functional 
relationship between these effects and changes in different parameters of the travel 
time functions. To capture the weather effects and the supply uncertainty, a 
Generalized Bureau of Public Roads (GBPR) travel time function proposed by Lam et 
al (2008) is adopted: 

 ( ) ( ) ( ) ( )0
S 0 1 ˆ Sa

s
s

zs s
l s s l at

K s

T i g i t V s
g i K

β∈ = + ∀ ∈ , (15) 
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 ( )
( )

ˆ
s

s l
l l b

l s a

V
V fr i pce

oψ
′

′∈

= ⋅ +∑ , (16) 

where ( )lfr i  is the frequency of the service line l under weather condition i; ( )sψ  is 
a set of bus lines passing Sas∈ ; pceb is the passenger car equivalent unit for bus 
vehicle; oa is the average car occupancy; sK  is the link capacity; 0

st  is the free-flow 
travel time; sβ  and z are parameters in the conventional BPR function; ( )0

st
g i  and 

( )
sKg i  are the scaling functions on free-flow travel time and link capacity under 

weather condition i respectively. Under normal weather condition ( ( )0 0 1
st

g =  and 

( )0
sKg  =1), the GBPR becomes the standard BPR function. This GBPR function is 

only applied to the auto hyper-links Sas∈ . Since auto hyper-link is only associated 
with a dummy service line, the superscript l in (15) is, in fact, unnecessary and will be 
omitted, i.e. Ss s

l aT T s≡ ∀ ∈ .  For auto mode, there is no in-vehicle congestion effect 

(unlike public transport modes), in which ˆ Ss s
aT T s= ∀ ∈ . 

3.3  Perceived in-vehicle travel time with crowding effect (PIT) 

For bus users, the inconvenience or dis-utility from the travel time on a certain route 
section or hyper-link also depends on the crowding level of the vehicle. The PIT on 
hyper-link Sbs∈  can be calculated from (i) travel times on the set of physical links 
related to hyper-link s and (ii) bus crowding level over that route section. The 
combined effect is represented by the product of the scale of in-vehicle congestion and 
the actual in-vehicle travel time following Fernandez et al (1994). Let ( ),s lΔ  be the 
set of the auto hyper-links used by service route of line l over the section related to 
hyper-link Sbs∈ . For instance, in Fig. 2 ( ) { }6, 4 10,12Δ =  since l4 uses auto hyper-
links 10 and 12 over the route section of hyper-link 6. The PIT of line l over Sbs∈ is: 

 ( ) ( ) ( )( ),
1

s
s n l

l
n s l l l

C
T i T i

fr i

γ

ϖ
κ∈Δ

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟= ⋅ + ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⋅⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭
∑� , (17) 
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where ϖ  and γ  are parameters of the in-vehicle congestion effect. Each hyper-link 
Sbs∈  involves a number of attractive lines. Thus, the PIT over hyper-link s is 

calculated from a weighted average of all s
lT�  Asl∈ : 

 ( ) ( )
A

ˆ
s

s s s
l l

l

T i T iη
∈

= ⋅∑ � . (18) 

Note that (17) and (18) are also applicable to the case of underground hyper-link in 
which nT  in (17) is replaced by a constant travel time of the underground hyper-link.  

3.4  Waiting and walking time with the weather effect 

For the transit modes, the other dis-utility term is the waiting time. For simplicity, the 
waiting time on a certain hyper-link S Sb us∈ ∪  is assumed to follow: 

 ( ) ( )
A

1

s

s

l
l

w i
fr i

∈

=
∑

. (19) 

The frequency of bus service may decrease under severe weather condition due to 
longer travel time. The formulation of waiting time can be further generalized to take 
into account the number of passengers in determining the waiting time (Fernandez et 
al 1994) and also the elastic line frequency as proposed by Lam et al. (2002). 

For the walking time, the nominal walking time on each ws S∈ is constant which is  
denoted by sT . However, under severe weather (heavy rain or snow), travelers may 
perceive more inconveniences from walking as compared to walking under normal 
weather condition. Thus, the perceived walking time on hyper-link ws S∈  can be 
defined as: 
 ( ) ( )ˆ s sT i i Tς= , (20) 

where ( ) 1iς ≥  is the scaling function for the perceived walking time under weather 
condition i. 

3.5  Stochastic generalized travel cost distribution 

The distribution of the generalized travel cost in (14) under each weather scenario can 
be characterized by its mean and variance which can be defined as: 
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( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )( )( )

, ,
S S S

,
S

,
S

, ,
S S

ˆ ˆ

ˆ

ˆ

ˆ ˆcov ,

a b u

w

ji

i j

i i

s
od s s swait
k s k s k

s s

swalk
s k

s

od s
k s k

s

ss
s k s k

s s

yE D i t i t i w i

t i

Var D i Var T i

T i T i

θδ δ
σ σ

θ δ
σ

δ

δ δ

∀ ∈ ∀ ∈ ∪

∀ ∈

∀ ∈

∀ ∈ ∀ ∈

⎛ ⎞⎛ ⎞⎡ ⎤ = ⋅ + ⋅ + ⋅ +⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠

+ ⋅

⎡ ⎤⎡ ⎤ = ⋅⎣ ⎦ ⎣ ⎦

+ ⋅ ⋅

∑ ∑

∑

∑

∑ ∑

,(21) 

In this paper, it is assumed ( )0
st

g i  and ( ) ( )( )1/
s sK K sg i g i K′ =  follows Normal 

distribution due to supply uncertainty, i.e.: 

 ( ) ( )( )2
~ ,

s

K K
K s sg i N μ σ′ , (22) 

 ( ) ( )( )0

2
~ ,

s

t t
s st

g i N μ σ , (23) 

For brevity we will omit the indicator to the weather condition (i) in the derivation in 
this section.  

The mean perceived travel time for hyper-link S S Sa u bs∈ ∪ ∪  can be defined as: 

 ( ){ }
( ),A

ˆ
s

s s a a s
l l

a s ll

E T E T E T C
γ

η χ
∈Δ∈

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⋅ + ⋅⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦∑ ∑ , (24) 

where ( )/ l lfr γχ ϖ κ= ⋅ . The term a aE T t⎡ ⎤ =⎣ ⎦  can then be expressed as: 

 ( ) ( )0
0 0ˆ ˆ

s sa

z za a t a
a a K l a a a K lt

t E g t g V t E g Vβ μ β⎡ ⎤ ⎡ ⎤′ ′= + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 .(25) 

By performing the Taylor-series expansion with the term ( )ˆ ns
lV  we can obtain: 

 ( ) ( ) ( ) ( ) ( )
0

!ˆ ˆ ˆˆ ˆ ˆ ˆ
! !

zz z rn ra a a a a a a
l l l l l l l

r

zV V v v v V v
r z r

−

=

= − + = −
−∑ , (26) 

where ˆˆa a
l lv E V⎡ ⎤= ⎣ ⎦ . From (16), 

( )

ˆ /a a
l l b l a

l a

V fr pce V o
ψ

′
′∈

= ⋅ +∑  which implies: 

 
( )

ˆ /a a
l l b l a

l a

v fr pce v o
ψ

′
′∈

= ⋅ +∑ , (27)

( )
( ) ( )

( )ˆ ˆ
a aa a

l la a l l
l l l b l b

l a l aa a a

V vV v
V v fr pce fr pce

o o oψ ψ
′ ′

′ ′∈ ∈

⎛ ⎞ −⎛ ⎞ ⎛ ⎞
− = ⋅ + − ⋅ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ . (28) 

By substituting (26)-(28) into (25), and replacing 
sKg ′  by  ( )a

K K
a K agμ μ′+ −  we obtain: 
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( ) ( )( )( ){ }0

0
a

z r ra t K a a K a a
a a a r a l l K a l l

r
t t E V v E g V vμ β μ μ

=

⎡ ⎤ ⎡ ⎤′= ⋅ + ⋅ Λ ⋅ − + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∑ , (29) 

where ( ) ( ) ( )( )ˆ! / ! !
z r ra

r l az v r z r o
−

Λ = − . The terms ( )ra a
l lE V v⎡ ⎤−⎢ ⎥⎣ ⎦

 and 

( )( )
a

rK a a
K a l lE g V vμ⎡ ⎤′ − −⎢ ⎥⎣ ⎦

 can be calculated by using the method proposed by Isserlis 

(1918), see e.g. Clark & Watling (2005), for estimating the moment of product of 
MVN which also requires the information in Section 2.3. 

By substituting ( )0
0 ˆ

aa

za a
a a Kt

T g t g Vβ ′= +  into (24) we can obtain: 

 ( ) ( ) ( ){ }
( )

0
0

,A

ˆ ˆ
aas

zs s a s a s
l a l a K lt

a s ll

E T t t E g C E g V C
γ γ

η χ β
∈Δ∈

⎛ ⎞⎡ ⎤⎡ ⎤⎡ ⎤ ′= + +⎜ ⎟⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠∑ ∑ ,(30) 

and by applying the Taylor-series expansion to ( )0
a

s
lt

E g C
γ⎡ ⎤

⎢ ⎥⎣ ⎦
 and  

( ) ( )ˆ
a

na s
K lE g V C

γ⎡ ⎤′⎢ ⎥⎣ ⎦
 we can obtain:  

 

( ){ }
( )

( ) ( )( )( )
( ) ( )

( )( ) ( )

1 1

01
1

2

2 3 2 3
2 3

,A

0

0

0 0

ˆ

ˆ ˆ

ˆ ˆ

s

a

a

s s a
l

a s ll

r rt s s t s s
r a a l l a l lt

r

rK a a s s
a l lz

a r r r rK a a s sr r
K a l l

E T t

t E C c E g C c

E V v C c

E g V v C c

γ

γ

η χ

μ μ

μ
β

μ

∈Δ∈

=

= =

⎡ ⎤ = + ⋅ Η +Μ⎣ ⎦

⎡ ⎤ ⎡ ⎤Η = Λ − + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎧ ⎫⎛ ⎞⎡ ⎤− −⎪ ⎪⎜ ⎟⎢ ⎥⎪ ⎣ ⎦ ⎪Μ = Λ Λ ⎜ ⎟⎨ ⎬
⎡ ⎤⎜ ⎟⎪ ⎪′+ − − −⎜ ⎟⎢ ⎥⎪ ⎣ ⎦ ⎪⎝ ⎠⎩ ⎭

∑ ∑

∑

∑∑

,(31) 

where ( ) ( )( )1

1 1 1!/ ! !
rs

r lc r r
γ

γ γ
−

Λ = − , ( ) ( )( )2

2 2 2ˆ !/ ! !
z rs

r v z r z r
−

Λ = − , and 

( ) ( )( )3

3 3 3!/ ! !
rs

r lc r r
γ

γ γ
−

Λ = − . The statistical properties of s
lC , sV , and s

lV  as 

derived in Section 2.3 can be used with the Isserlis’ method to calculate 

( )( ) ( )2 3ˆ ˆ
a

r rK a a s s
K a l lE g V v C cμ⎡ ⎤′ − − −⎢ ⎥⎣ ⎦

, ( ) 1rs s
l lE C c⎡ ⎤−⎢ ⎥⎣ ⎦

, ( )( ) 1

0
a

rt s s
a l lt

E g C cμ⎡ ⎤− −⎢ ⎥⎣ ⎦
, 

and ( ) ( )2ˆ ˆ
ra a s s

l lE V v C c⎡ ⎤− −⎢ ⎥⎣ ⎦
  in (31). 

The formulation in (31) is applicable to the auto hyper-link ( Sas∈ ) by setting the 
frequency of the dummy line (for auto and waling modes) to be infinity implying 
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0χ =  in which (31) reduces to { }
( ),A

ˆ
s

s s a s
l

a s ll

E T t tη
∈Δ∈

⎡ ⎤ = =⎣ ⎦ ∑ ∑ . For the underground 

mode, (31) is applicable by setting 0
a

K
K ag μ′ = =  and 0 1

a

t
at

g μ= =  (implying constant 

deterministic travel time and not affected by the weather condition) in which M = 0 

and H = ( )( )1

1
1

0

0

rt s s
r a a l l

r

t E C c
γ

μ
=

⎡ ⎤Λ −⎢ ⎥⎣ ⎦∑ , and (31) reduces to: 

 ( )( )
( )

1

1

1

0 0

, 0A

ˆ S
s

rs s s s
l a a r l l u

a s l rl

E T t t E C c s
γ

η χ
∈Δ =∈

⎧ ⎫⎛ ⎞⎪ ⎪⎡ ⎤⎡ ⎤ = + Λ − ∈⎜ ⎟⎨ ⎬⎣ ⎦ ⎢ ⎥⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ ∑ .(32) 

 
To calculate (21), the derivation of the var-cov of ˆ sT  is also required. The var-cov can 
be defined as: 
 ( )ˆ ˆ ˆ ˆ ˆ ˆcov ,a b a b a bT T E T T E T E T⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (33) 

ˆ ˆa bE T E T⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  can be calculated from (31). ˆ ˆa bE T T⎡ ⎤⎣ ⎦  can be expressed as: 

( )

( )

( ) ( )
( )( ), ,A A

ˆ ˆ

a b a b

b

b a

a b a
a b

a a b ba b

a b

a b

n n n nb b
l

n na b a b a a
l l l

n a l n b ll l

n na b a b
l l

E T T E T T C

E T T E T T C

E T C T C

γ

γ

γ γ

χ

η η χ

χ χ
∈Δ ∈Δ∈ ∈

⎧ ⎫⎡ ⎤⎡ ⎤ +⎣ ⎦ ⎢ ⎥⎪ ⎪⎣ ⎦
⎪ ⎪⎪ ⎪⎡ ⎤⎡ ⎤ = +⎨ ⎬⎣ ⎦ ⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤+ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑ ∑ ∑ ,(34) 

where ( )/
a a

a
l lfr

γ
χ ϖ κ= ⋅  and ( )/

b b

b
l lfr

γ
χ ϖ κ= ⋅ . The term a bn nE T T⎡ ⎤⎣ ⎦  can be 

reformulated as: 

( )
( ) ( ) ( )

0 0 0

0

0 0 0

0

ˆ

ˆ ˆ ˆ

b

a b a b nbn n na b a

a a b

b a n a b n na a bnb

zna a
n n n n K lt t t

z z zn n n
n n K l n n K l K lt

E T T t t E g g t E g g V

t E g g V E g V g V

β

β β β

⎡ ⎤⎡ ⎤ ′⎡ ⎤ = +⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤′ ′ ′+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,(35) 

The terms ( )b a

a

n n a
lE T T C

γ⎡ ⎤
⎢ ⎥⎣ ⎦

, ( )a b

b

n n b
lE T T C

γ⎡ ⎤
⎢ ⎥⎣ ⎦

, ( ) ( )a b

a b

n na b
l lE T C T C

γ γ⎡ ⎤
⎢ ⎥⎣ ⎦

 in (34) 

can also be reformulated by multiplying ( )a

a
lC

γ
, ( )b

b
lC

γ
, or  ( ) ( )a b

a b
l lC C

γ γ
to (35) 

respectively. Each term of the product of normally distributed random variables in 

(35) (e.g. ( )0 0 bn na b

b
lt t

E g g C
γ⎡ ⎤

⎢ ⎥⎣ ⎦
) and in ( )b a

a

n n a
lE T T C

γ⎡ ⎤
⎢ ⎥⎣ ⎦

, ( )a b

b

n n b
lE T T C

γ⎡ ⎤
⎢ ⎥⎣ ⎦

 and 

( ) ( )a b

a b

n na b
l lE T C T C

γ γ⎡ ⎤
⎢ ⎥⎣ ⎦

 can be transformed to a product of moments of normal 
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distributions by applying the Taylor-series expansion technique, see (26). Similar to 
the other derivations previously done in this section, this transformation then allows 
the application of the Isserlis’ method to calculate these terms. Due to the limited 
space, the full derivations of these terms will be omitted.  

(33) and (34) can then be used to define the var-cov of all hyper-links in the hyper-
network. With the mean and var-cova of the hyper-link PITs, the mean and variance of 
the generalized PIT on each hyper-route, as defined in (21), can be evaluated. The 
probability density function (PDF) for the generalized PIT of hyper-route k under the 
weather condition i, denoted by ( )( )od

kD iΘ , is then characterized by its mean and 

variance:  
 ( )( ) ( ) ( )( ),od od od

k k kD i E D i Var D i⎡ ⎤ ⎡ ⎤Θ Θ ⎣ ⎦ ⎣ ⎦∼ . (36) 

4.  Effective generalized travel time and effect of weather forecast 
information  

4.1  Definition and effect of weather forecast information  

In practice, the travelers can acquire the rainfall information via the weather forecast. 
In this paper, we assume that the weather forecast provides the forecast of the 
likelihood of different categories of the weather condition (see e.g. 
http://weather.yahoo.com). Table 1 shows an example of the weather forecast 
information provided to the travelers.  

Table 1. Example of weather category, forecasted probability, and average hourly rainfall intensity 

Weather categories (i) Forecasted probability  Average hourly rainfall intensity ( iπ ) 

No rain/light rain ( 0i = ) 50% 5 mm/hr 

Normal rain ( 1i = ) 25% 20 mm/hr 

Amber rainstorm ( 2i = ) 15% 30 mm/hr 

Red rainstorm ( 3i = ) 5% 50 mm/hr 

Black rainstorm ( 4i = ) 5% 70 mm/hr 
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In Table 1, each possible weather category is forecasted with the probability of its 
occurrence ( ip� ). ip�  is the prior probability of weather category i. From Table 1 
tomorrow could have no rain/light rain, normal rain, amber rainstorm, red rainstorm, 
or black rainstorm with the chances of 50%, 25%, 15%, 5% and 5%, respectively. 
Nevertheless, the weather forecast may not be accurate, and the travelers may perceive 
a posterior probability for occurrence of each weather category based on their past 
experiences. Let /i pp �

�  be the conditional probability of p�  (a vector of ip� ) given 
weather condition i occurs. /i pp �

�  represents the accuracy of the weather forecast 
according to the past experience. For example, /i pp �

� = 60% means that in the past 
among 100 times of occurrence of the weather condition i there were 60 times that the 
weather forecast had predicted the information of p� . Then, according to the Bayes’ 
Theorem, the posterior probability of occurrence of i given the weather forecast p�  can 
be defined as: 

 [ ] /

/
1

Pr / i p
i i iR

l l p
l

p
p i p p p

p p
γ

=

′ = = =

∑

�

�

�
� � �

� �
, (37) 

where R is the total number of weather category and ip′  is the posterior probability of 

i; / /
1

/
R

i p l l p
l

p p pγ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑� �

� � �  is the updating factor related to the accuracy of weather 

forecast. Obviously, the following conservation equation of posterior probability 
holds: 

 
1

1
R

l
l

p
=

′ =∑ . (38) 

Given the vector of the posterior probability, there may be possible multiple states 
of the network (i.e. link and path travel times). The PDF of the hyper-path generalized 
PIT under weather category i is ( )( )od

kD iΘ  following (36). The resultant random 

hyper-path generalized PIT from different possible weather categories is then a 
mixture distribution with the PDF: 

 ( )( ) ( )( )
1

R
od od
k l k

l
D I p D i

=

′Θ = ⋅Θ∑� , (39) 

where ( )( )od
kD IΘ�  is the mixture PDF of the hyper-path generalized PIT considering 

all weather categories; ( )od
kD I  denotes the mixture hyper-path generalized PIT on 

path k .  
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4.2  Effective travel time of generalized perceived in-vehicle travel 
time 

The hyper-path generalized PIT, ( )od
kD I , is stochastic, and hence the travelers must 

choose their routes by trading off between the average dis-utility and variation of the 
dis-utility on each route. Several indicators have been proposed to include such 
variation of the route cost into the analysis such as late arrival penalty (Watling, 2006) 
or safety margin (Lo & Tung 2003). In this paper, the SD of the generalized PIT is 
adopted as the indicator of variation of hyper-path generalized PIT. The effective 
generalized PIT for each hyper-path can be defined as: 
 ( ) ( ) ( )od od od

k k kI E D I SD D Iπ⎡ ⎤ ⎡ ⎤Γ = + ⋅⎣ ⎦ ⎣ ⎦ , (40) 

where ( )od
kE D I⎡ ⎤⎣ ⎦  and ( )od

kSD D I⎡ ⎤⎣ ⎦  are the mean and standard deviation of ( )od
kD I  

respectively; π  is the risk-aversion parameters (the higher is the π , the more risk-
prone is the traveler).  

From (39), the mean of ( )od
kD I  can be defined as: 

 ( ) ( )
1

R
od od
k l k

l
E D I p E D i

=

′⎡ ⎤ ⎡ ⎤= ⋅⎣ ⎦ ⎣ ⎦∑ . (41) 

The unconditional variance of ( )od
kD I can be defined as: 

 
( ) ( ) ( )

( ) ( ) ( )( ){ }2

1

od od od
k k k

R
od od od

l k k k
l

Var D I E Var D i Var E D i

p Var D i E D i E D I
=

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

′ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑
,(42) 

Thus, the effective hyper-path generalized PIT is: 

 ( ) ( )
( )

( ) ( )( )2
1 1

od
R R k

od od
k l k l od odl l k k

Var D i
I p E D i p

E D i E D I
π

= =

⎧ ⎫⎡ ⎤⎣ ⎦⎪ ⎪′ ′⎡ ⎤Γ = ⋅ + ⋅ ⋅ ⎨ ⎬⎣ ⎦
⎡ ⎤ ⎡ ⎤+ −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∑ .(43) 

5.  Probit type SUE condition and solution algorithm  

The traveler’s attitude toward the risk is modeled in the form of effective generalized 
PIT. The travelers’ perception errors due to the imperfect knowledge of network 
characteristics or taste variation are modeled separately (Bell & Cassir, 2002) as the 
perceived effective generalized PIT on each hyper-path: 
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 ( ) ( ) K ;od od od
k k k odI I k odεΓ = Γ + ∀ ∈ ∀ ∈Π� . (44) 

where k
rsε  is the perception error associated with the hyper-path concerned. From A2, 

( )( )MVN ,E εε ε Σ∼  where ( )E ε  and εΣ  are mean vector and var-cov matrix of ε . 

Each hyper-link is associated with an independent normally distributed perception 
error term in which ( )E ε  and εΣ  can be calculated from the network structure, see 
e.g. Connors et al (2007). The fixed-point condition for the Probit SUE can be defined: 
 ( ) ( )( )Pr , Kod od od

k k k odp I I k′ ′= Γ ≤ Γ ∀ ∈� � . (45) 

(45) is the fixed-point condition since ( )od
k IΓ�  is also a function of the vector of od

kp . 

( )od
k IΓ�  is a continuous function of the vector of od

kp  which guarantees the existence 
of a solution to (45) based on the Brower’s fixed point theorem. The uniqueness of the 
solution can be guaranteed if ( )od

k IΓ�  is strictly monotone which requires further 
analysis. In this paper the approximation method as proposed by Mendell & Elston 
(1974) is employed to calculate the hyper-path choice probability to reduce the 
computational time and sampling error from the Monte-Carlo simulation. 

There exist a number of efficient solution algorithms for solving the traditional UE 
or SUE traffic assignment problems. However, most of these methods cannot be 
applied directly to solve (45) due to the non link-additive of the SD element in the path 
effective generalized PIT. Thus, the path-based algorithm with Method of Successive 
Average (MSA) is adopted in this paper. A hyper-path set is assumed given and fixed 
which can be based on the observation and/or interview surveys (Van Nes et al, 2008). 
The algorithm can be summarized as follows: 
Step 0 Initialization: Set j = 1; define possible hyper-path set for each OD pair 

(denoted as Kod ). Find a feasible hyper-path probability vector jp  

Step 1 Network evaluation: Assign ( ),~od od j
k k odF Poi p q⋅  to the stochastic network 

(see Section 2.3) and then calculate ( ),od j
k IΓ  following Sections 3 and 4. 

Step 2 Direction finding: Evaluate ( ) ( )( ), , ,Pr , Kod j od j od j
k k k odg I I k′ ′= Γ ≤ Γ ∀ ∈� � .  

Step 3 Check convergence: If j j j− ≤ Ξp g p  or j > jmax terminates the algorithm; 

Ξ  is the convergence criteria and jmax is the maximum iteration number  

Step 4 Move: ( )1j j j j jα+ = + ⋅ −p p g p  where 1j

j
α = ; set j = j +1 and go to Step 1. 
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In Step 4 various choices of the step-size are available ranging from optimal step-
size to a fixed step-size. For simplicity, we adopt the commonly used step-size 

1j

j
α =  which ensures an asymptotic rate of convergence. 

6.  Numerical examples 

The primitive physical network in Fig. 1 is adopted in the tests in which the hyper-
network can be defined as shown in Fig. 2. This network was also adopted in Uchida 
et al (2007). There are two O-D pairs: O1 to D1 and A to X. The OD demands are 
assumed to be ( )

1 1
5000o dQ Poi∼  and ( )AX 1000Q Poi∼ . The travelers between O1 -D1 

can use all travel modes whereas the travelers between A-X can only bus mode. 
Without loss of generality,  and a bo pce as defined in (16) are both set as 1.0. The 
parameters for the hyper-link dis-utility terms follow the same setting as adopted in 
Uchida et al (2007) and will not be repeated here. The SD of the hyper-link perception 
error term is set to be 30% of the free flow generalized PIT (excluding the fare) of that 
hyper-link. Table 2 shows the characteristics of the service lines respectively.  

Table 2. Service line characteristics 

Line Mode Frequency: frl Vehicle 
capacity: 
Kl 

Mode specific 
constant: αm 

coefficients for 
disutility specific 
to link: π, ρ 

Calibration 
parameters for 
discomfort 
function: βl, γl 

1 bus 5 100 10 1, 0.02 1, 2 
2 bus 5 50 20 1, 0.02 1, 2 
3 bus 5 50 20 1, 0.02 1, 2 
4 bus 5 50 20 1, 0.02 1, 2 
- auto - - 50 1, 0.02 - 
- walk - - 5 1, 0.02 - 

 
Five weather categories shown in Table 1 are adopted for the tests. Table 3 shows 

the five scenarios for the weather forecast which will be tested in turn. The bold 
figures in Table 3 highlight the most likely weather condition in each scenario. Unless 
specified otherwise, under weather category 1 the bus frequency is set to be at the 
nominal frequency as shown in Table 3. With other weather categories, all bus 
frequencies are assumed to reduce to 2 vehicles/hour. The inconvenience scaling 
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factor for walking is defined as: ( ) 2 iiς π= ⋅ ; iπ  is the average hourly rainfall intensity 
for weather condition i as defined in Table 1. 

Table 3. Scenarios for different weather forecast information 

Scenario 1p�  2p�  3p�  4p�  5p�  1/ pp �
�

 2/ pp �
�

 3/ pp �
�

 4/ pp �
�

 5/ pp �
�

 

S1  80.0% 8.0% 6.0% 4.0% 2.0% 90.0% 4.0% 3.0% 2.0% 1.0% 
S2  8.8% 75.0% 8.8% 5.0% 2.5% 7.0% 80.0% 7.0% 4.0% 2.0% 
S3  4.5% 10.5% 70.0% 10.5% 4.5% 4.5% 10.5% 70.0% 10.5% 4.5% 
S4  3.5% 7.0% 12.3% 65.0% 12.3% 4.0% 8.0% 14.0% 60.0% 14.0% 
S5  4.0% 8.0% 12.0% 16.0% 60.0% 5.0% 10.0% 15.0% 20.0% 50.0% 

 
The parameters for the GBPR function are set as: 

 ( ) ( ) ( )

2

~ ,     S
exp 0.05 2exp 0.05

s s
s a

i i

g i N s
β β

π π

⎛ ⎞⎛ ⎞
⎜ ⎟′ ∀ ∈⎜ ⎟⎜ ⎟⎜ ⎟× ×⎝ ⎠⎝ ⎠

, (46) 

 ( ) ( ) ( )( )( )
0

2
~ exp 0.05 ,0.25 exp 0.05   Ss i i at

g i N sπ π× × ∀ ∈ , (47) 

where ( )20 / .s s st Kβ =  The fixed seven possible hyper-paths are defined in Table 4. 
Each hyper-path is also associated with the main travel mode as shown in Table 4.  

Table 4. Predefined hyper-path set for each OD pair 

OD pair Hyper-path no. Hyper-link sequence 

1 1O D−  

1 (underground mode) 18-1-16 
2 (bus mode) 15-6-16 
3 (bus mode) 14-2-16 
4 (auto mode) 8-9-10-12-17 
5 (auto mode) 8-9-11-13-17 

A-X 
6 (bus mode) 2 
7 (bus mode) 4-7 

 
Table 5 shows mean hyper-path flows of all seven hyper-paths under five scenarios. 

Two tests are compared: model with ( ) 2 iiς π= ⋅  (vary case) and model with ( ) 1iς =  
(fixed case). In Table 5, the bold numbers indicate the hyper-route between O1-D1 
with the maximum mean flow under different scenario.   
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Table 5. Hyper-route mean flows under each scenario with ς(i) =  2πi (vary) and ς(i) = 1 (fixed) 

Path 
S1 S2 S3 S4 S5 

Varied fixed varied fixed varied fixed varied fixed varied Fixed 
1  1,296 1,377 1,325 1,517 1,417 1,621 1,679 1,920 2,058 2,307 
2  0 0 0 112 27 370 97 530 205 619 
3 0 0 0 0 0 0 0 0 0 0 
4 1,851 1,811 1,835 1,683 1,775 1,499 1,609 1,272 1,364 1,033 
5 1,853 1,812 1,841 1,688 1,782 1,510 1,616 1,278 1,372 1,041 
6 501 501 501 495 501 479 496 464 487 454 
7 499 499 499 505 499 521 504 536 513 546 

 
Under S1 and S2, hyper-paths 5 and 6 are the most used under both fixed ( )iς  and 

varied ( )iς cases. Both hyper-paths are related to the auto mode implying the 
dominance of auto mode under S1 and S2 whose most likely weather conditions are 
no-rain/light-rain and normal-rain respectively. On the other hand, under S3-S5, which 
involve more severe raining condition, the most used hyper-paths are hyper-path 1 
(underground mode). This result is intuitive since under the normal weather condition 
the road network can offer its best service which should generally be more convenient 
than public transport modes. On the other hand, under severe weather condition the 
variability and degradation of the road performance may shift the demand from car to 
underground which is a weather-proof system. 

From Table 5, the bus mode is rarely used under all scenarios (particularly hyper-
path 3 which has only line 2 as an attractive line). Further analysis of the result reveals 
the higher mean waiting time of hyper-path 3 as compared to hyper-path 2 (which has 
lines 3 and 4 as attractive lines). Hyper-path 2 has higher flows under more severe 
weather condition which may be due to the reduction of actual travel time caused by 
the demand shift from auto to underground modes. The result in Table 5 also shows 
that in general with the weather-proof walking facility (represented by the fixed 
( )iς case) a higher demand shift to public transport (both to underground and bus) can 

be achieved especially under severe weather conditions. 
Table 6 presents the mean and SD of the generalized PIT of each hyper-path. The 

bold number is the minimum mean generalized PIT for O1-D1 under each scenario 
which is always the auto mode (hyper-paths 4 and 5). In fact, as the weather becomes 
more severe (S3-S5), the gap between the means generalized PIT of the auto and 
underground modes increases. Despite this wider gap, the higher demand shifts from 
auto to underground are achieved under S3-S5 (see Table 5). The reason for the shift is 
the lower SD of the generalized PIT of the underground as compared to the auto mode 
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(underlined numbers in Table 6). This illustrates the influence of the effective travel 
time function in the mode choice model.  

Table 6. Hyper-route mean and SD of hyper-route generalized PIT under each scenario with ς(i) =  
2πi (vary) and ς(i) = 1 (fixed) 

Path 
S1 S2 S3 S4 S5 

Varied fixed varied Fixed varied fixed varied fixed varied Fixed 
1  259(29) 236(0) 449(34) 306(0) 613(53) 369(0) 994(85) 594(0)1,497(155) 1,011(0)

2  425(26) 358(11) 496(40) 290(18) 590(78) 327(42) 939(142) 513(82)1,370(284) 840(173)

3 1,282(28) 1,181(42) 1,015(48) 743(47) 970(100) 626(73)1,347(181) 823(124)1,856(363) 1,230(251)

4 249(42) 213(27) 430(56) 273(37) 569(100) 307(65) 904(178) 477(121)1,323(332) 787(227)

5 249(42) 213(27) 430(56) 273(37) 569(100) 307(65) 904(178) 477(121)1,324(332) 787(227)

6 1,219(44) 1,175(42) 774(49) 737(47) 607(68) 620(73) 754(110) 817(124)1,079(215) 1,224(251)

7 1,215(43) 1,172(41) 772(48) 735(46) 604(67) 617(71) 752(109) 818(121)1,078(213) 1,225(245)
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Fig. 3. Modal shares between O1-D1 pair 

Fig. 3 shows the variations of modal shares when the frequency of bus service lines 
3 increases from 5 veh/hr to 25 veh/hr under different weather scenarios. The test 
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considers fully the scaling factor for walking and reduced bus frequency under severe 
weather (except the frequency of line 3). As expected, as the fr3 increases the modal 
share for bus increases. Interestingly, the more severe is the weather, the higher is the 
modal share of bus. This is mainly due to the drastic demand shift from auto-mode. 
Note that the higher bus frequency also implies the higher fixed traffic volume (from 
bus vehicle) on the road network, i.e. ( )

( )

ˆ /s s
l l b l a

l s

V fr i pce V o
ψ

′
′∈

= ⋅ +∑ . This bus traffic 

becomes affects the auto travel time more under the bad weather condition closing the 
gap between the generalized PIT between bus and auto and hence attracts more 
demand to the bus mode (see also the result under S5 in Table 6).   

7. Conclusions and discussions 

This paper proposed a stochastic network model for multi-modal transport network 
which considers auto, bus, underground, and walking modes. The stochastic elements 
represent day-to-day demand variability and supply uncertainty due to adverse weather 
condition and random capacity degradation. The paper assumed different effects of 
adverse weather on the performances of different transport modes depending on their 
exposures to the weather condition. For the public transport network, the paper fully 
utilized the common-line framework to represent route choice strategy of transit 
passengers. The introduction of the common-line framework required a new and 
complex analysis (which was provided in the paper) of the statistical properties of the 
passenger flows and different terms involved in dis-utility function (including in-
vehicle travel time, in-vehicle congestion effect, waiting time, and walking time).  

The model proposed in this paper also incorporated the information from the 
weather forecast system into the travelers’ route and mode choice models. The 
travelers were also assumed to have prior belief on the chances of different weather 
conditions given the weather forecast. To capture the trade-off between the average 
and variability of travel condition, the paper adopted the SD as an indicator of 
variability of the hyper-route travel condition in which the effective generalized travel 
time was defined as the sum of mean and SD of the generalized hyper-path travel time. 
The multi-modal hyper-path choice model was then assumed to follow the Probit SUE 
in which path-based solution algorithm (based on MSA) was proposed therein. The 
model and algorithm were tested with a hypothetical network. 

The tests results were plausible and highlighted the key role of weather-proof 
system (e.g. underground) as the main travel mode under severe weather condition. 
The results also showed the need for the weather-proof walking facility and increase in 
bus service frequency to attract more passenger demands.  
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