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Approaches in traffic flow analysis
* Euler (Macroscopic) Vs Lagrange (Microscopic)
» Static (#9) vs Dynamic (Eh#9)
* Normative (###9) vs Descriptive (stik#9)
- i
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Tools for traffic flow analysis

* Equilibrium flow analysis
— Euler & Normative
— Mostly Static, rarely dynamic

— to focus on the “objective state” in NW flow derived by
mathematical optimization

* Traffic simulation analysis
— Euler/Lagrange & Descriptive
— Dynamic
— to focus on the “consequent state” in NW flow
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What is “equilibrium” (#9i) ?
* Any system in the world finally becomes stable in
nature
* Equilibrium is a state of balance, especially between
opposing forces or influences
* Equilibrium is a state in which system don’t have any
motivation to change it (most stable state)
8

Behavioral criterion ({7&1#&8) in a transport NW
* Most travelers prefer...

* Fastest route

* Cheapest route

* Route with maximum utility

* Utility maximization (i RAS&XI1t)
* Generalized cost minimization (—&{t EAR /ML)




What is equilibrium in a transport NW

* Wardrop’s rule (1952) (&% ma1)

1. For each OD pair, at user equilibrium (UE), the travel time
on all used paths is equal and less than or equal to the
travel time that would be experienced by a single vehicle
on any unused path

2. At system optimum (SO), the total travel time of all
vehicles is smallest

* Balance between demand (BE) and supply (f8)

Difference between UE & SO

The extra cost paid by-<€a i
driver|= Coi patfoer toll -

Path 2 Path 1 a \ SO UE X,
Volume x, Volume x;, 4
Cost ¢,(x,) Cost ¢,(x,) Market failure (F1i5 M £ 8)
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Expression of NW system based on Graph
Theory

Centroid = Node where
O trip generates and attracts
Link

Q Q Q Node

@ O O

Dependency of travel cost to demand

* Flow dependent
— Travel cost of a link is affected by demand level (=congestion)

* Flow independent
— Travel cost of a link is never affected by demand level




Characteristics of link performance in road NW

Traffic flow g(veh/h) Average speed v(km/h)
Density k(veh/km)=N/L

Section length L(km)

Link performance function

Traffic volume

£%7 BPR function :
s S (US Bureau of Public Road) Parameter
= i
s 8
F e B
o X
S ta(xa):t()a I+o| =
° N Ca
ty: Travel time Link a
in free flow :
Capacity: C
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Formulation of UE(FIH&&R#)

* For each OD pair, at user equilibrium (UE), the travel time (or generalized
cost) on all used paths is equal and less than or equal to the travel time
that would be experienced by a single vehicle on any unused path

{C/:S =C ( > O)

v v
e, (f,("“':O) ,kekK, TrseQ

s.t. Zke c. fF-0,.=0 f” Traffic flow of path k of OD rs
£r20 ¢, Travel time of path k of OD rs
>
¢,, Minimum travel time of OD rs
i =2, 0mt.(x,)
acd @k alTa Q.. Traffic volume of OD rs
X =2 O 87 1iflink a is included in path & of

OD rs, otherwise 0

Conversion to optimization problem:
Beckmann (1956)

minZ, =y .[Ox t,(w)aw

s.t ZkeK f7-0.=0 keK,  ,'rseQ
krs Z 0
DI ACH

rs rs

X :z o
a kekK,,,rseQ akJ k

Constrained Non-linear Optimization Problem




Lagrangian function

L (f\’ )") =Z, (f) - Zmeg Ars (ZkeKm, =0, )

Vector of  f;”* Lagrange’s multiplier

Kuhn-Tucker (optimal) condition

(1) f;‘%zo and %};})20 VkeK, JJrseQ
(Z)M:O Vrs e Q

oA

rs

Kuhn-Tucker Condition (1)

y
v L min Z(x) s.t. { glx)=x2a=d,
P L g(x)=-x2-b=d,
: Primary optimum condition
/;(2)5 (1) x'=b
-7 ng(x*):—1<0 and LZ(x*):p<0
; ; x dx dx
a b 1o a b @) x' =a
LIg‘(x*)=1>0 and 7dZ(x*):q>0
. . dx dx
aZly)_ s, de.lv’) o
dx — "

dx . .
h,20 and &, {dn —&. (x*)} =0 h di'(; ): h, . (x ) h,: non-negative scalar

g, ()4,

Secondary optimum condition: Convex set
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Kuhn-Tucker Condition (2)

X, min Z(xl > xz) s.t. &, (xl > X ) >d, (n = 1,2,3,4)

Constf it (2) ::::: N Primary optimum condition

Y/~ \Pespent direction VZ(x' )= Ve, (x )+ hVe,(x') 204,20
S el al) el )
Minimam point x* ox,, ox,, ox,,
. =
C line of OF .
ontour line o X c'iZ(x ) _ Zhn o, (x ) .
ox ~ ox

Kuhn-Tucker Condition (3)

minZ (X) s.t. &, (X)Z d, "n Lagrange’s multiplier

Lagrangian function L(x,h) =Z (x)+ Zhn {dn -g, (x)}

L(x,h) . .
h Condition at saddle point
imum pojft 8L(x*,h*):0 Yo
=“Yaddle pOint’ A#:2) 0ox,
A oL(x",h ):0 nd 9L h )so b 20 n
X " Oh, oh

aZ(X*)_Zhn 8gan(x*):0 hn(ZO) and hn{dﬂ_gn(x*)}:o vV
m n Xm g, x* Zdn




a
©0

Solution of UE

From (1) afi —0 (7200 Fom@ Y, /-0, =0
k

8L s __
o >0 (1, =0)

8§S = afrs {ZaeAjo a dW} afrs {Z;ssﬂ rS kekK,, Q’S )}
d (¢ o,
= Z“EAdxa(-[O z, (w)dwj e

ox

where of” o 5f s (Z,sen ZkEK Sk krs): Ok

f e b

& >e. (17 =0)

rs s _ I
ZaeA6ak a( a)_ﬂ’m =C _Z’rs =EC —Cy

Example

Network & Demand Link performance function

R, t]+=15+0.025f
Q=200(veh
(veh) R,
m G © i 003/

Rs

t=5+0.1f
How much are link flows?
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Solution

~

t=15+0.025f

. i /2 f
minZ, = IO t(w)dw+ IO t (w)dw+J.0 t,(w)aw
=5£+0.05£+10f,+0.0125f7 +15f,+0.0125 f;
3
st. 2. f;=200 and f,>0,f,20,f,>0
k=1

1=10+0.025/

t=540.1f}

50 109 s
Lagrangian function

3
L(f,A)=5f +0.05£% +10f, +0.0125 £ +15f, +0.0125 1} —A(ka —200}
k=1

Kuhn-Tucker condition
5+0.1f,=2 (f,>0) [10+0.025f, =4 (f,>0) [15+0.025f, =24 (£, >0)
5401/, 24 (f,=0) [10+0.025f,>A(f, =0) [15+0.025f,>2 (f, =0)
3
D/ =200

k=1
Solution (by searching)
f,=80,f,=120, ,=0,2=13

Formulation of SO AFLTRHE)

At system optimum (SO), the total travel time (or generalized cost) of all
vehicles is smallest

minZ, = Zae p J.Oxa wt, (w)dw
S.t. ZkeK fkrs - Qm =0 ,Vk € Km ,VI”S eQ)
krs ZO

cl:S = ZLJEA 5:,?1{ ta (xa )

s grs
X, = z o
a keK,,,rseQ) a.kJ k

11



Lagrangian function

Lt 3= 2603, 02 1 -0.)

Kuhn-Tucker (optimal) condition

(1) f;‘%zo and %};})20 VkeK, JJrseQ
(Z)%’L*):O Vrs e Q

rs

Solution of SO

From (1) affL” —0 (f720)  Fom@ Y, £-0,=0
oLy (e
o i =0

el = +_dt;(x)
w

w=Xx,

Extra travel time by one additional user
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Interesting phenomenon: Braess’s Paradox

Link performance function

t,=50+0.0Lx,
t, =0.1x,
t,=0.1x,
t,=50+0.01x,
t; =10+0.01x;

Derive link flow parameters
at UE & SO state

UE state

Travel time = 83

Total travel time = 83 X 600 = 49,800

Travel time = 92

Total travel time = 92 X 600 = 55,200

Link 4

Bad effect of road construction!
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General algorithm for solution of NLOP by
computer

Objective functi
Z(X) Method of steepest descent (2T %)
(1) Find a direction to make the value
of OJB function much smaller

(2) Find a optimal step size in
descending direction

Frank-Wolfe Method: How to find descending direction?

Z(y)=27'(y)= Z(x("))+ VZ(X(”))T(y - x(”)) Linear approximation

26 3~ )y, )

acAd ax‘(:) aeA
=28 S () E i )
acA acA
Constant
q min Z'(y)= Zyata(xg”)) s.t. ka” -0,=0and V.= Z Z‘ka 4
acd keK g kekK,, rseQ

Calculate y minimizing total travel time in condition that x, = xl(f)

All-or-nothing assignment of all OD volume to the shortest path when x, = xf,”)

Minimized y gives the steepest descent of VZ (x("))

#Easy computing

2010/1/15
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Frank-Wolfe Method: Algorithm

Step0  Set initial link traffic flow x (! by all-or-nothing assignment
in condition of 7,(0), and set iteration number n=1

Stepl  Calculate 7, by link performance function

Step2  Calculate y,, which is link traffic flow based on all-or-nothing
assignment to the shortest path in condition of £,V , and calculate
descending direction vector d") = y!" —x"

Step3  Find step size { ™ to minimize Z"*D by non-linear line searching
) 00 4 )00

M

Step4  Calculate x,"*1 using ™

Step5  Ifx, D is close to x,™ , x,*"D is the solution
If not, back to Stepl n>n+1

Shortest path searching (R¥EEHEIER) algorithm

Dijkstra method . link label list Predecessor list 5
g node node i
o D 12| 3 |4|5|6|7|1|2(3(4]|5|6|7
1 0 |oo| oo |oo|oofeo|eo| 0|00 |0|0O|0|O|1
211|245 |0]|2| o |4]9|co|ee|0|1|0|2[1]|0|0]|2
312 3,4 0(210|4|9|co|e=|0|1f2|21]|2|0|0|4
414 5,7 0(2(10|4|8|~|6|0|1|2|1]|4|04|7
5(7| 36 (0|29 |4|8|7|6|0|1|7|1(4]|7|4|6
6|6 5,7 0|29 |4|8|7|6|0(|1(7|1|4|7|4|5
75| 46 |0|2| 9 |4|8|7|6|0|1|7|1(4]|7|4|3
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Stochastic user equilibrium (SUE) (#8971
&%)

* Limitations of the assumption of UE
— Any user do not have a full information (S8 1&E$#) of all link costs in
the network
* Introduction of uncertainty (AR FESEHE) of link costs
— The link cost perceived by user varies stochastically
— User chooses a path with minimum utility (cost)

* At stochastic user equilibrium (SUE), all travelers believe that they cannot
shorten their OD travel time (or generalized cost) by transferring to any
different path

Formulation of SUE(1)

Pathutility: UP =" +&" ¢ =Y 1,67

acd a” ak
Error term

Choice probability of path £ of OD rs (Random utility theory)
P =PrfUp 2 max(U )= Prley - &7 2 max(e -7 )

k k

Choice probability if error term is determined by Weibul distribution W(O,@)

P eXp(— 96?) p _
' zk'eKﬁ exp(—@c;‘?) -ttt T '111.0 f=
Expected path & link flow
E(f7)=0.57 0=0
E(x)=Y, o>, B0 /
=6
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35
Formulation of SUE(2)

Optimization problem
. Xa 1 rs
min Z(f): ZaeA J‘O ta (Wﬁw_gzmeggml—lm( )

Entropy term: H m( . ) =—> . B’lmp* == s In i

kEKW QVS Q)'S
St Dy, ST 70 =00 3, =Y SIS [0 20

Solution of SUE

Lagrangian function
L.0)=2(0- 3, 02 o 1= 0u). 1720
Kuhn-Tucker condition

e AL ) _ ) g PHET)
k afkr: afkr:

v

6%" —cp -1, —é(ln £ +1-100,)=0 W) £ =0, exp(-6c Jexp(02,, 1)
0, =3, f' =0, exp(0, -1)Y, , expl-0c])

1

exp(g/‘Lr: - 1) = W}
keK,, k

exp(— oc;’ )
rex, SXP\= Oc;’

fkm = Qrs
2

2010/1/15
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Meaning of entropy term

n) 5 e =3, Bl

rs rs _ _ rs _ rso_ Q
mame( )—>f1 == == f) _?rs

T rs rs rs rs
mlnHrs( )_>f}( =Qrs’f1 == K =O
Entropy maximization = Increasing evenness

SUE = minimizing travel time considering unevenness

Consideration of dynamic aspect

* Dynamic problem: OD volume and link flow are expressed by a function of
time t

* Dynamic System Optimum (DSO)

— Total travel time (or generalized cost) of all vehicles in focused time duration is
smallest

* Dynamic User Optimum (DUO)

— All travelers choose the path with smallest travel time (or generalized cost)
instantaneously at focused time

* Dynamic User Equilibrium (DUE)
— All travelers choose the path with smallest travel time (or generalized cost)

2010/1/15
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Application to tempo-spatial network — train
schedule problem

Station K Station K+1
Origin
Access link

Boarding link
Train N

Egress link

N

Waiting link Flow dependent link

Destination Flow independent link

Moving link .
Train N+1

Transfer link
Passing link

Stopping link

Formulation (UE)

minZ, = ZaeA J:“ t,(w)dw
st D S -0,=0"keK,  rseQ
P
D INIACH

rs prs
X, = Z 1)
a kekK,, rseQ a,kf‘k

Link performance function Travel time
Moving link: ¢, (w) = Ta[l +1 Cw J = Congestion disutility
uC—-w

Waiting link: 7, (w)=a/, \ Train capacity
Transfer link: ¢, (w) = pF,

Waiting time

Transfer time

2010/1/15
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